
Learning Neural Priority Functions for Search-based Planning using
Sufficient Conditions for Bounded Suboptimality without Re-openings

Anonymous submission

Abstract

Best-first search algorithms use a priority function to order
a queue of nodes for a systematic exploration of the search
space. The priority is typically a function of the cost-to-come
from the start (g) and a lower-bound estimate of the cost-
to-go to the goal (h), and takes the form of a linear combi-
nation. However, this linear form may not capture the true
relationship between g and h for a given search problem,
and designing an analytic function for this relationship is of-
ten impractical. While it is hard to provide guarantees with
neural networks, they offer the flexibility to learn priority
functions from data to improve search efficiency. Recently,
it was shown that a priority function only needs to satisfy
a set of sufficient conditions to certify bounded-suboptimal
search without re-openings. In this paper, we explore the use
of neural networks as priority functions, applying regulariza-
tion using these sufficient conditions during the learning pro-
cess. We integrate the learned neural priority function into
BFS and Focal-search and evaluate its performance across
multiple domains, including 2D and 3D navigation and the
sliding tile puzzle.

Introduction
The priority function is central to best-first search (BFS)
algorithms, allowing them to focus on the most promising
paths and find solutions faster than exhaustive approaches.
This ability to prioritize promising paths is essential for
planning in large search spaces or time-sensitive problems.
Priority functions can leverage domain knowledge to inform
decision-making, but fully capturing this knowledge can be
challenging. In such cases, neural networks (NN) can learn
from data relevant contextual information to guide the prior-
ity function, further enhancing the effectiveness of BFS so-
lutions. Recently, several works showed the potential of us-
ing NN to reduce the number of expanded nodes during the
search (Bhardwaj, Choudhury, and Scherer 2017; Choud-
hury et al. 2018; Agostinelli et al. 2019; Yonetani et al. 2021;
Takahashi et al. 2021). However, their performance in long-
horizon and complex planning scenarios and their ability to
maintain guarantees (i.e., bounded suboptimality) while op-
erating efficiently remains unclear. Takahashi et al. (2021)
introduced a novel loss function for heuristic learning. How-
ever, it may not consistently yield high-quality heuristics or
address the challenges of finding bounded suboptimal solu-
tions and avoiding the overhead of reopening nodes (where

Figure 1: A 3D navigation problem: finding a minimum-cost
path for a holonomic ground robot while maintaining com-
putational efficiency using neural priority function.

a node can be expanded again if a better path to it is found).
Bounded suboptimal search (BSS) algorithms are crucial

for practical problems that are too complex to solve op-
timally, offering a trade-off between solution quality and
planning costs (e.g., node expansions). BSS algorithms use
a queue data structure to store nodes ordered by a priority
function. Weighted A* (wA*) (Pohl 1970), a BFS variant, is
a widely used BSS algorithm for finding solutions within a
predefined suboptimality bound using just a single queue to
manage node exploration without requiring queue re-sorting
(re-arranging the nodes in the queue based on new prior-
ities) or node re-opening (Likhachev, Gordon, and Thrun
2003). More advanced algorithms (Pearl and Kim 1982;
Thayer and Ruml 2008, 2011; Cohen et al. 2018; Aine et al.
2016) that outperform wA* in certain domains split their
operation into two tasks: finding a solution and proving its
bounded suboptimality. These algorithms typically employ
multiple queues, with one queue – often called the focal list
– dedicated explicitly to enforcing the suboptimality bound.
However, unlike wA*, these approaches often require queue
resorting and node reopening to guarantee bounded sub-
optimality, operations that impact both search performance
(Sepetnitsky, Felner, and Stern 2016) and solution quality
(Valenzano, Sturtevant, and Schaeffer 2014).

In this paper, we propose a method for learning con-
textualized neural priority functions in the general form of
f(n) = Φ(h(n, ng), g(n), context), where n is any search
state and ng is the goal. Unlike most prior approaches that



only learn the heuristic function h, we directly learn the
priority f as a function of the current g-value and a given
consistent heuristic estimate. This approach extends beyond
traditional linear priority functions by learning a (contextu-
alized) neural representation of the priority. To do this in
a principled way, we regularize the learning of the neural
priority using a set of recently developed sufficient condi-
tions for a priority function to avoid costly node re-openings
(Chen and Sturtevant 2019). By formulating these suffi-
cient conditions as soft constraints in the NN optimization
process, our approach aims to learn priority functions that
balance the current search context with the desired prior-
ity function characteristics. We demonstrate the use of our
neural priority function in both BFS and focal search algo-
rithms, showing that it generalizes to new problem instances
while improving efficiency and maintaining solution qual-
ity.

Preliminaries
wA* uses a queue ordered by the priority function f(n) =
g(n) + ϵ · h(n, ng), where ϵ ∈ R>1 is the allowed subop-
timality factor. Since the priority function is a linear combi-
nation of g and h, the level curves (points (h, g) with equal
priority), or isolines, are straight lines in the h-g plane. Due
to the linear nature of these isolines, wA* maintains con-
stant suboptimality along each portion of the path being ex-
plored. However, varying suboptimality along different por-
tions of the path may lead to improved search performance.
For example, in a 3D navigation problem (Fig.1), we might
want higher suboptimality bounds in obstacle-free regions to
search more greedily, while maintaining lower suboptimal-
ity in cluttered areas for a more systematic search.

Focal List
A lot of work has been done on developing BSS algorithms
that improve upon wA*. Many of these algorithms introduce
an additional queue, called a focal list, which decouples two
tasks: finding a solution fast and guaranteeing its subopti-
mality bound. We explain how Focal search works as many
bounded suboptimal search algorithms that use focal lists
rely on the same core concept.

Focal search maintains two queues: OPEN, ordered by
an admissible priority function f1, and FOCAL, defined as:
FOCAL = {n ∈ OPEN | f1(n) ≤ ϵ · minn′∈OPEN f1(n

′)}
with a sub-optimality bound ϵ ≥ 1. The next node expanded
is chosen from FOCAL according to some priority function
f2. This approach is powerful as it allows the use of any
problem-specific priority function while maintaining subop-
timality bounds, often dramatically improving performance.
In the context of isolines, introducing the second priority
function allows for different suboptimalities, shaped like
curves, within the linear isoline bound. However, to guar-
antee bounded suboptimality, queue re-sorting can happen
often, and node re-openings must be allowed (Cohen et al.
2018), unlike wA*, which is guaranteed to return a solution
within the suboptimality bound without re-opening nodes1.

1wA* may find a better solution when reopenings are permitted.

Sufficient Conditions for a Priority Function in
BSS to Avoid Re-openings
While problem-specific priority functions can be benefi-
cial, they risk requiring node re-openings since f2 is uncon-
strained. Recent work has shown that any priority function
in the form of f(n) = Φ(h(n, ng), g(n)) can be used in BFS
to guarantee bounded suboptimality without re-openings so
long as they meet certain properties (Chen and Sturtevant
2019). This enables the design of problem-specific priorities
that allow varying suboptimality along different portions of
the path.

Method
In this work, we propose learning a neural priority function
f(n) = Φθ(h(n, ng), g(n), ϕ(m)) while incorporating the
sufficient conditions as constraints in the learning process.
Here θ denotes the parameters of the NN model and ϕ(m)
is the encoding function that provides context based on the
map m. Our method can be formalized as the following op-
timization

find Φθ (1a)
s.t. arg min

n∈OPEN
Φθ = n∗ (1b)

Φθ(0, ϵ · t, ϕ(m)) = t (1c)
Φθ(t, 0, ϕ(m)) = t (1d)
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∂h
≤ 0;−∂Φθ

∂g
≤ 0 (1e)

∂Φθ

∂g
− ∂Φθ

∂h
≤ 0 (1f)

∂Φθ

∂h
+

∂Φθ

∂g
≤ 2 (1g)

where n∗ is a node on the optimal path from ns to ng and
Eq. 1c-1g are the sufficient conditions for a priority func-
tion to certify bounded suboptimality in a BFS without re-
opening states (Chen and Sturtevant 2019). Intuitively, Eq.
1c-1d states that a node with g = ϵ · t and h = 0 should have
equivalent priority as a node with g = 0 and h = t, since
both lead to an ϵ-suboptimal path, Eq. 1e constrains the func-
tion to be monotonic with respect to g and h, Eq. 1f requires
that Φθ grows faster with increases in h than with equiva-
lent increases in g and Eq. 1g bounds the rate of change of
the isolines. To learn such a function, we relax the problem
by defining the set of conditions 1c - 1g as soft constraints,
which we then incorporate into the loss function.

Loss Function
To train our neural priority function Φθ to satisfy the suf-
ficient conditions while accurately predicting optimal path
costs, we employ a composite loss function. The total loss L
is defined as:

L = LMSE + λ1L1 + λ2L2 + λ3L3

The MSE loss is computed between the network’s output
and the target optimal path cost:

LMSE = E(x,f∗(n))∈D
[
||Φθ(x)− f∗(n)||2

]



(a) Neural priority function learning with
our loss function (CST).

(b) Neural priority function learning with
only MSE.

(c) A∗ baseline, using a priority of g(n)+
h(n).

Figure 2: Comparison of our proposed loss function for training a neural priority function versus training with only MSE and
the A∗ baseline. The green dot represents the start node, the red dot indicates the goal node, and the blue line shows the found
path. The colored regions depict the expanded nodes during the search, with darker colors indicating lower f -values. As shown,
our proposed learning method results in fewer expansions while maintaining solution quality.

where x = (n, ng, g(n), h(n, ng), ϕ(m)) and f∗(n) is the
target priority value. To enforce the gradient constraints
from equations 1e-1g, we compute the gradients of the out-
put with respect to the cost-to-come and heuristic inputs:

∇gΦθ =
∂Φθ

∂g
, ∇hΦθ =

∂Φθ

∂h

These gradients are used to formulate the penalty terms:

L1 = E [ReLU(−∇gΦθ) + ReLU(−∇hΦθ)] (From 1e)
L2 = E [ReLU(∇gΦθ −∇hΦθ)] (From 1f)
L3 = E [ReLU(∇gΦθ +∇hΦθ − 2)] (From 1g)

The weights λi follow a linear schedule:

λi(t) = λstart
i + (λend

i − λstart
i )(t/T )α

where t is the current epoch, T is the total number of epochs,
and α is the growth rate. We choose the range of λi values
such that λiLi ≪ LMSE throughout training to ensure the
gradient penalties act as soft constraints without dominating
the primary learning objective. Then, as training progresses
and λi values increase, we increasingly enforce the gradi-
ent constraints. This approach helps avoid local optima that
might satisfy the constraints but poorly approximate the tar-
get values.

The conditions from equations 1c and 1d are implicitly
satisfied via LMSE, since all the data points along a path have
the same f∗ values.

Data Collection
Let M = {m1, . . . ,mk} be a set of k generated maps. Then
the encoding function ϕ : M → Rd is a domain-specific
autoencoder, where d is the dimension of the latent space.
For each map mi, we generate a set of N start nstart goal ngoal
pair nodes queries Qi = {qi,1, ..., qi,N}. For each query qi,j ,
we run forward and backward optimal search between nstart

and ngoal and cache g values for all expanded states. Then,
the target function is the optimal path cost from the start
node to the goal node through a specific node n: f(n) =
gforward(n) + gbackward(n).

The resulting dataset D consists of indexed tuples
grouped by map D = {(mi, Xi)}ki=1, where Xi represents
all the j samples from map mi. Each sample in Xi is a tuple
containing a node, the goal node, the cost-to-come, heuristic
value, the map encoding, and the optimal cost from start to
goal through the node (xi,j , f

∗(ni,j)).

Experiments
To evaluate the proposed neural priority function, we created
a set of experiments in three different planning domains:
two-dimensional grid navigation with a point robot (Fig. 2),
three-dimensional grid navigation with a holonomic robot
(incorporating orientation) with a rectangular footprint (Fig.
1), and the sliding tile puzzle.

We benchmark our learned neural priority function
against wA*, which inflates the heuristic by the factor of al-
lowed suboptimality and uses a priority key of g(n)+ϵ·h(n);
Dynamic Potential Search (DPS), that uses an adaptive pri-
ority of B·fmin−g(n)

h(n) where B is the required suboptimality
factor and fmin is the minimum f -value in OPEN; Multi-
Heuristic A* (MHA*), which employs multiple heuristic
queues while ensuring bounded suboptimality through an
admissible anchor heuristic; and Optimistic Search (OS),
which uses two queues to first find a solution quickly with
a greedy approach, and then attempts to prove its bounded
suboptimality.

The neural priority function is implemented as a fully-
connected neural network. For spatial domains (2D/3D navi-
gation), we incorporate environmental context through latent
encodings generated by a U-Net architecture (Ronneberger,
Fischer, and Brox 2015). For the sliding tile puzzle, we em-



Table 1: Performance comparison of search algorithms on the 2D (XY) and 3D (x,y,orientation) (XYT) domains. SC: Solution
cost relative to A*, ER: State expansion ratio compared to A*, RR: State re-opening rate relative to total state expansions in
percentages [%]. -R algorithms indicate that re-openings were allowed. -F algorithms indicate Focal Search. -N indicate neural
priority functions; MSE indicates the priority function was trained using exclusively MSE loss, while CST indicates that soft
constraints were applied in conjunction with MSE loss.

Metric A* WA*-R WA* DPS-R DPS N MSE-R N MSE N MSE-F-R N MSE-F N CST-R N CST N CST-F-R N CST-F
SC-XY 1.00 1.06 1.14 1.04 1.09 1.04 1.07 1.04 1.07 1.00 1.03 1.00 1.03
ER-XY 1.00 0.16 0.07 0.22 0.20 0.19 0.12 0.19 0.12 0.08 0.07 0.08 0.07
RR-XY — 62.8 — 47.6 — 68.8 — 68.7 — 15.5 — 15.5 —
SC-XYT 1.00 1.30 1.35 1.26 1.31 1.01 1.01 1.01 1.01 1.00 1.01 1.00 1.01
ER-XYT 1.00 0.92 0.58 1.51 0.84 0.97 0.71 0.99 0.73 0.63 0.60 0.63 0.61
RR-XYT — 34.2 — 66.9 — 26.3 — 18.6 — 3.70 — 1.20 —

Table 2: Performance comparison across algorithms on the 24-puzzle and 48-puzzle instances. SC: Solution cost relative to A*,
ER: State expansion ratio compared to A*, RR: State re-opening rate relative to total state expansions in percentages [%], SR:
Success rate in achieving lower expansions relative to A* in percentages [%]. -R: algorithms indicate that re-openings were
allowed. -F algorithms indicate Focal Search; MSE/CST: Neural Network variants with MSE/Constraint loss.

Metric A* WA*-R WA* DPS-R DPS OS IMHA*-R IMHA* SMHA* MSE-R MSE MSE-F-R MSE-F CST-R CST CST-F-R CST-F
SC-24 1.00 1.58 1.60 1.52 1.53 1.16 1.10 1.13 1.17 1.01 1.02 1.01 1.02 1.00 1.00 1.00 1.00
ER-24 1.00 0.36 0.32 0.29 0.28 0.54 0.42 0.34 0.32 0.37 0.37 0.38 0.37 0.36 0.36 0.36 0.36
RR-24 — 5.12 — 6.27 — — 2.28 — — 0.14 — 0.07 — 0.05 — 0.00 —
SR-24 100 76 80 72 85 82 90 90 93 97 97 97 97 99 99 99 99
SC-48 1.00 1.28 1.34 1.42 1.44 1.14 1.21 1.25 1.20 1.01 1.01 1.01 1.01 1.00 1.00 1.00 1.00
ER-48 1.00 0.39 0.32 0.40 0.37 0.28 0.29 0.27 0.31 0.32 0.33 0.32 0.33 0.32 0.32 0.32 0.32
RR-48 — 8.65 — 26.0 — — 3.39 — — 0.07 — 0.05 — 0.02 — 0.01 —
SR-48 100 84 88 80 90 88 96 96 97 100 100 100 100 100 100 100 100

ploy a direct representation, as the domain structure does not
benefit from spatial encoding.

We also evaluate the impact of introducing the sufficient
conditions for BSS without re-openings as soft constraints
into the learning process over exclusively MSE loss.

We set a consistent suboptimality bound of ϵ = 3.0 across
all BSS algorithms. For MHA*, we distribute the subop-
timality evenly by setting its bounds to ϵ1 = ϵ2 =

√
3,

maintaining the same total bound of 3.0. We evaluate our
learned neural priority function in two configurations: a
single-queue BFS, and integrated into Focal Search. For
both configurations, we permit node re-openings, a policy
choice whose impact on solution quality we analyze sepa-
rately. For each domain, we evaluate the algorithms’ perfor-
mances on 100 distinct problems and report the means in
Table 1 and Table 2.

Heuristics. For the 2d and 3d navigation domains, we use
Euclidean distance as our admissible and consistent heuris-
tic for WA*, DPS, and OS. For the sliding puzzles, we em-
ployed the Manhattan Distance (MD) combined with Lin-
ear Conflicts (LC) as the primary admissible and consistent
heuristic function, defined as h0 = MD + LC. To enhance
the performance of MHA* algorithms, we generated two
additional heuristics by incorporating the number of Mis-
placed Tiles (MT) with random weights, ensuring a subopti-
mality bound of 3. Specifically, each additional heuristic hi

was computed as hi = r1 × MD + r2 × LC + r3 × MT,
where r1, r2, r3 are randomly selected weights between 1.0
and 3.0.

We observe that the learned priority function with soft
constraints produces superior solution quality to WA*, DPS,
MHA*, and OS while performing comparably on state ex-
pansions, though it may achieve slightly inferior state expan-

sion rates in certain scenarios. The neural priority function
also produces the highest success rates of the tested algo-
rithms in returning solutions while requiring less state ex-
pansions than A*, as can be seen in Fig. 2.

Allowing re-openings can allow solution quality refine-
ment at the cost of state expansions. With the learned priority
functions, near-optimal solutions mean little possible bene-
fit in solution quality from allowing re-openings, though the
neural priority function with soft constraints dominates per-
formance on re-openings relative to learning node priorities
directly with MSE loss without additional constraint, partic-
ularly on the 2D and 3D domains.

Conclusion
In this work, we proposed an approach for learning neu-
ral priority functions that improves the efficiency of search-
based planning algorithms. Unlike common approaches that
focus on learning heuristic functions, our method learns a
priority as a function of the g-value, a consistent heuristic
value, and problem-specific context. By incorporating suffi-
cient conditions for bounded suboptimal search without re-
openings as regularizers during training, we demonstrated
across three domains that our approach maintains low so-
lution costs while improving computational efficiency. Our
results also show that when allowing node re-openings, our
regularization leads to fewer re-openings while maintain-
ing nearly identical solution quality. Future work could ad-
dress the computational overhead of neural network infer-
ence through simplified architectures and selective inference
strategies. Despite this limitation, our work establishes a
promising direction for incorporating machine learning into
search algorithms while considering their theoretical guar-
antees and desired properties.
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